1. Homepage
  2. Writing
  3. COMP4161 T3/2024 Advanced Topics in Software Verification - Assignment 1: Syntactic Conventions, Reduction, Type Derivation, Propositional logic and higher-order logic
This question has been solved

COMP4161 T3/2024 Advanced Topics in Software Verification - Assignment 1: Syntactic Conventions, Reduction, Type Derivation, Propositional logic and higher-order logic

Chat with a Specialist
UNSWCOMP4161Advanced Topics in Software VerificationSyntactic ConventionsReductionType derivation treePropositional LogicHigher-Order Logic

COMP4161 T3/2024 Advanced Topics in Software Verification - Assignment 1

1. λ-Calculus (16 marks)

(a) Simplify the term $(pq)(\lambda p\cdot(\lambda q\cdot(\lambda r\cdot(q(rp))))))))$ syntactically by applying the syntactic conventions and rules. Justify your answer. (2 marks)

(b) Restore the omitted parentheses in the term $a(\lambda a b.(bc)a(bc))(\lambda b.cb)$ (but make sure you don’t change the term structure). (2 marks)

(c) Find the normal form of $(\lambda f\cdot\lambda x\cdot f(fx))(\lambda g\cdot\lambda y\cdot g(g(gy)))))$. Justify your answer by showing the reduction sequence. Each step in the reduction sequence should be a single β-reduction step. Underline or otherwise indicate the redex being reduced for each step. (6 marks)

(d) Recall the encoding of natural numbers in lambda calculus (Church Numerals) seen in the lecture:

  • $0\equiv\lambda fx,x$
  • $1\equiv\lambda fx.fx$
  • $2\equiv\lambda fx.f(fx)$
  • $3\equiv\lambda fx.f(f(fx))...$ Define exp where exp m n beta-reduces to the Church Numeral representing $m^{n}$. Provide a justification of your answer. (6 marks)

2. Types (20 marks)

(a) Provide the most general type for the term $\lambda a b c.a(x b b)(c b)$. Show a type derivation tree to justify your answer. Each node of the tree should correspond to the application of a single typing rule, and be labeled with the typing rule used. Under which contexts is the term type correct? (5 marks)

(b) Find a closed lambda term that has the following type:

  • $('a\Rightarrow'b)\Rightarrow('c\Rightarrow'a)\Rightarrow'c\Rightarrow'b$ (You don’t need to provide a type derivation, just the term). (4 marks)

(c) Explain why $\lambda x.xx$ is not typable. (3 marks)

(d) Find the normal form and its type of $(\lambda f x.f(x x))(\lambda y z.z)$. (3 marks)

(e) Is $(\lambda f x.f(x x))(\lambda y z.z)$ typable? Compare this situation with the Subject Reduction that you learned in the lecture. (5 marks)

3. Propositional Logic (29 marks)

(a) $x\to\neg\neg x$ (3 marks)

(b) $(X\to Y\to\neg X)\to X\to\neg Y$ (3 marks)

(c) $\neg\neg A\to A$ (4 marks)

(d) $\neg(A\land B)\to\neg A\vee\neg B$ (4 marks)

(e) $\neg(A\to B)\to A$ (4 marks)

(f) (continued)

(g) $(A\to B)\to((B\to C)\to A)\to B$ (5 marks)

4. Higher-Order Logic (35 marks)

(a) $(\forall x.\neg Px)=(\nexists x.Px)$ (4 marks)

(b) $(\exists x y.Pxy)=(\exists y x.Pxy)$ (4 marks)

(c) $(\exists x.Px\to Q)=((\forall x.Px)\to Q)$ (7 marks)

(d) $((\forall x.Px)\to(\exists x.Qx))=(\exists x.Px\to Qx)$ (7 marks)

(e) $\forall x.\neg Rx\to R(Mx)\Rightarrow\forall x.Rx\vee R(Mx)$ (6 marks)

(f) $\llbracket\forall x.\neg Rx\to R(Mx);\exists x.Rx\rrbracket\Rightarrow\exists x.Rx\land R(M(Mx))$ (7 marks)

联系辅导老师!
私密保护
WeChat 微信
UNSW代写,COMP4161代写,Advanced Topics in Software Verification代写,Syntactic Conventions代写,Reduction代写,Type derivation tree代写,Propositional Logic代写,Higher-Order Logic代写,UNSW代编,COMP4161代编,Advanced Topics in Software Verification代编,Syntactic Conventions代编,Reduction代编,Type derivation tree代编,Propositional Logic代编,Higher-Order Logic代编,UNSW代考,COMP4161代考,Advanced Topics in Software Verification代考,Syntactic Conventions代考,Reduction代考,Type derivation tree代考,Propositional Logic代考,Higher-Order Logic代考,UNSW代做,COMP4161代做,Advanced Topics in Software Verification代做,Syntactic Conventions代做,Reduction代做,Type derivation tree代做,Propositional Logic代做,Higher-Order Logic代做,UNSWhelp,COMP4161help,Advanced Topics in Software Verificationhelp,Syntactic Conventionshelp,Reductionhelp,Type derivation treehelp,Propositional Logichelp,Higher-Order Logichelp,UNSW作业代写,COMP4161作业代写,Advanced Topics in Software Verification作业代写,Syntactic Conventions作业代写,Reduction作业代写,Type derivation tree作业代写,Propositional Logic作业代写,Higher-Order Logic作业代写,UNSW编程代写,COMP4161编程代写,Advanced Topics in Software Verification编程代写,Syntactic Conventions编程代写,Reduction编程代写,Type derivation tree编程代写,Propositional Logic编程代写,Higher-Order Logic编程代写,UNSW作业答案,COMP4161作业答案,Advanced Topics in Software Verification作业答案,Syntactic Conventions作业答案,Reduction作业答案,Type derivation tree作业答案,Propositional Logic作业答案,Higher-Order Logic作业答案,